
Appears in Software Visualization: Programming as a Multimedia Experience.

MIT Press, 1998, 369-381.

Like professional programmers, teachers and students of computer science

frequently use pictures as aids to conceiving, expressing, and communicating

algorithms.  Instructors used to cover blackboards and themselves with chalk in

drawing intricate diagrams of data structures and control flow, yet often made

errors such as improperly estimating the space needed for a proper layout.

Students try to improve their visualization of a program’s behaviour by

sketching representations of nesting of procedures, scope of variables, memory

allocation, pointer chains, and organization of record structures.

Unfortunately, a program’s behaviour cannot be described by a static drawing; it

requires a dynamic sequence.  We must trace control flow, bind variables, link

pointers, and allocate memory.  We must execute processes which mimic those

of the machine.  It is difficult for us to enact these dynamic sequences directly.

Our drawings are inaccurate.  Our timing is bad.  We make major mistakes, such

as skipping or rearranging steps.  Thus it would be useful to have animation

sequences portraying the behaviour of programs constructed automatically as a

by-product of their execution, and therefore guaranteed to portray this execution

faithfully.
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Animation is a compelling medium for the display of program behaviour.  Since

programs are inherently temporal, executing through time, they can be vividly

represented by an animated display which portrays how they carry out their

processing and how their essential state changes over time.  Furthermore, many

algorithms employ repetitive computations, whether expressed iteratively or

recursively.  These can be viewed efficiently when displayed as a motion

picture.  In so doing, we can perceive structure and relationships of causality,

and ultimately infer what the program is doing.

Software visualization can therefore be a powerful tool for presenting computer

science concepts and assisting students as they struggle to comprehend them.

This chapter traces the author’s early investigations of this concept, presents a

detailed description of the contents and development of a successful 30-minute
teaching film Sorting Out Sorting, and outlines other work in pedagogical uses

of program animation since Sorting Out Sorting.

Animating programs for pedagogical purposes is not a trivial endeavor.  There

are numerous intricate details in most computer programs.  To be effective,

algorithm animation must abstract or highlight only the essential aspects of an

algorithm.  We must decide which program text and which data to represent,

how they are to be visualized, and when to update their representations during

the execution of a program,  Most importantly, we must try to enhance relevant

features and suppress extraneous detail, to devise clear, uncluttered, and

attractive graphic designs, and to choose appropriate timing and pacing.

In 1971, having completed GENESYS (Baecker 1969a,b; Baecker, Smith, and

Martin, 1970), a pioneering interactive computer animation system for artists, I

turned my attention to the role of computer animation for computer science

(Baecker, 1973).  I was surprised that computer scientists had not reacted more

enthusiastically to Ken Knowlton's (1966a,b) dramatic early computer animation

explaining the instruction set of a low-level list processing language.  Two

notable exceptions were Bob Hopgood (1974) and Kellogg Booth (1975), whose
early films are reviewed in    the history chapter by         Baecker    .

We carried out a number of program animation experiments in the next seven

years.  Students in computer graphics classes developed animations of specific

algorithms, such as bubble sort, recursive merge sort, hash coding, and hidden
line elimination.  Ed Yarwood (1974) explored the concept of program

Early Work
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illustration, focusing specifically on the integration of program source text with

diagrams of program state.  Several students built extensions to language

processors to aid the animation of programs in specific languages such as Logo

and PL/I (Baecker, 1975).  Finally, in 1978, we decided to use this experience to
produce a teaching film on the subject of sorting algorithms.

From 1978 to 1981 we produced a 30-minute colour sound film, entitled Sorting

Out Sorting , which uses animation of program data coupled with an explanatory

narrative to teach nine different internal sorting methods.  The film, now

primarily distributed as a videotape (Baecker, 1981), was generated with a

16mm computer-output film recorder.

Sorting Out Sorting explains the nine sorting algorithms sufficiently well so that

a student who has watched the animation carefully could program some of them

herself.  It also illustrates the differences in efficiency of the various algorithms.

The movie has been used successfully with computer science students at various

levels.  As a motivational aid, and to introduce the concept of the efficiency of

different solutions to the same problem, it is shown in introductory computer

science courses at the university, community college, and high school level.  As

an explanation of solution methods, it is shown in first or second courses on

programming.  It can also be used in introductory courses on data processing,

algorithms, or complexity.

Internal Sorting Methods

Internal sorting methods are algorithms for rearranging items within a data

structure into some predefined order.  Typically this order is that of increasing

numerical value, decreasing numerical value, or alphabetical order of a field

within the data structure.

There are over one hundred internal sorting algorithms (Knuth, 1973; Lorin,

1975; Wirth, 1976).  All have both advantages and disadvantages.  Typical
tradeoffs are between the algorithm's difficulty of programming and complexity,

or speed of execution, and between its time and space requirements.

Internal sorting methods compare items with other items to determine if they are

in the correct order or if items need to be moved.  Items are then moved zero or

more times until they reach their final and correct positions.  Once all items have

reached their final positions, the data is sorted and the algorithm is finished.

Sorting Out Sorting
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Execution time is therefore primarily determined by the times required for data

comparisons and for data movements.  The execution time of internal sorting

algorithms over n items of data is, in most cases, proportional to either n2 or n

log n.  As n becomes large, differences between the times required become very

significant.  However, the simplest algorithms to design, program, and
understand are those whose execution time is a function of n2 .

The film deals with three distinct groups of algorithms — the insertion sorts, the

exchange sorts, and the selection sorts.  Other techniques, such as the merge

sorts and the distribution sorts, are not covered.  Our treatment is closest in

content and spirit to that found in Section 2.2 of Wirth (1976).

Structure and Content of the Film

A program may be viewed as a mechanism for transforming one set of data into

a new set of data.  If we consider a program’s state to be determined by its data,

then one way of animating and portraying the program is to show how the data

is transformed over time.  By viewing these sequences of transformations, or

possibly several such sequences resulting from different initial sets of data, one

can induce the algorithm upon which the program is based.

For example, assume that we wish to order a single array of numerical data into

increasing order.  We can portray each data item as a vertical bar (Fig. 1), whose

height is proportional to the value of the item.  Initially, the heights of

successive items will vary upwards and downwards.  Successive steps of a

sorting method will produce rearrangements of the data, until ultimately we

should have the elements arrayed in order of increasing height with the smallest

one on the left and the largest one on the right.

The movie begins with the insertion sorts, in which successive items of data are

inserted into their correct position relative to items previously considered.  The

process is analogous to picking up cards of a bridge hand and inserting them into

their correct positions relative to the cards already in one's hand.

The Linear Insertion Sort (Fig. 1) is the simplest of the insertion sorts.  For each

new item, we scan through the array sorted thus far, looking for the correct

position; having found it, we move all the larger items one slot to the right and

insert the new item.  The Binary Insertion Sort speeds up this technique by using

a binary search to find the item’s correct position.

Figure 1a-d. (a is at the top.) Linear
Insertion: a) first comparison of the 4th
pass, with the first 4 items already
correctly ordered;  b) final comparison
of the 4th pass;  c) end of the 4th pass,
after the 5th item has been moved to the
front; d) data is sorted. Colours (shown
here as gray scale) denote “unsorted”
and “sorted,” i.e., in the correct
position thus far. Borders indicate that
two items are being compared.
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In the Shellsort (Fig. 2), we first perform insertion sorts on subsequences of the

data spaced widely apart, thus moving items closer to their ultimate destination

more quickly.  We then perform insertion sorts on subsequences of the data

spaced more closely together.  We continue in this way until we do as the final

pass a regular insertion sort.  Because items have already been moved close to

where they belong, this pass is extremely efficient.

In the exchange sorts, we interchange pairs of items until the data is sorted.

In the Bubblesort (Fig. 3), we pass through the data from one end to the other,

interchanging adjacent pairs of items which are ordered incorrectly relative to

each other.  Each such pass “bubbles” one more item into its correct position, as

for example the smallest items shown at the top in Figure 3.  The Shakersort

improves on this technique by alternating passes in both directions, and by

keeping track of when and where no exchanges were made in order to reduce the

number of comparisons on future passes.

The Quicksort (Fig. 4) selects an item at the beginning of the data (the “pivot”),

and proceeds by exchanging items from that end that are larger than the pivot

with items from the other end that are smaller than the pivot.  The pivot is then

moved between the two sets of data, so that it is in its correct final position,

correctly dividing the set of smaller items from the set of larger items.  The

Quicksort is then applied recursively to each set.  The Quicksort is one of the

most efficient of those presented in the film.

The selection sorts are those which the algorithm selects, one by one, the data

items and positions them in the correct order.

In the Straight Selection Sort, the data is scanned for the smallest item, which is

then inserted, with a single data movement, into its final position in the array.

Each pass selects the next smallest item from the remaining data.  Tree Selection

significantly reduces the number of comparisons by organizing the data into a

tree, at the cost of requiring more storage.

Heapsort (Fig. 5) preserves most of Tree Selection's efficiency gains without

using extra storage.  It does this by repeatedly organizing the data into a special
kind of binary tree called a heap, in which each parent is greater than its

children, and then moving the top of the tree into its correct final position.

Figure 2a-b. Shellsort.  The two frames
show the beginning and end states of
the 1st pass, which performs an
insertion sort on a subsequence of the
data consisting of every 5th item.

Figure 3. Bubblesort.  The two
highlighted items are about to be
swapped.  The top three items have
reached their correct positions.
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Problems

A problem in early drafts of the film was a lack of consistent visual conventions.

The student who is presented with the animation of several algorithms at once
should be able to forget about the technique of presentation and concentrate

instead on what is being taught.  Without an appropriate set of visual

conventions, such as one colour to denote “sorted” items and another for “items

still to be considered,” the viewer may spend more energy trying to figure out

what the picture means than she will expend in trying to follow the algorithm.

A central problem is that of timing .  The steps of the algorithms must first be

presented slowly, to give time both for the narrator to explain what is happening

and for the student to absorb it.  However, once the algorithm is understood,

later steps may be boring.  This is particularly true in the case of the insertion

sorts, which appear to slow down as they go along, whereas the exchange and

selection sorts begin slowly and appear to speed up towards the end.

We needed a visually interesting and convincing way to convey the message that

some simple algorithms which are easy to code are nonetheless not appropriate

for sorting large data sets.  One way to do this is by means of animated

performance statistics.  Yet if we also wish to do this by showing the algorithms

operating upon large amounts of data, then we have new representation

problems.  To fit the desired information legibly onto the screen and to compress

the animation into a reasonable span of time requires the design of different

methods of portraying the data and different conventions for illustrating the

progress of the algorithms.

To summarize, we are faced, throughout the film, with the problem that totally

literal and consistent presentations can  be boring.  Consistency is required so

that changes made for visual purposes not be interpreted falsely as clues relevant

to understanding the algorithm.  Being literal and explaining things step-by-step

is required to aid initial understanding, but we must go beyond this to add visual

and dramatic interest as we present more advanced material.

Solutions

The presentation of nine algorithms, grouped into three groups of three, lends

itself to a pleasing symmetry.  We present each group as a separate act of the

film.  In each case, we present the algorithms within each group in increasing

order of efficiency, and hence increasing order of complexity of explanation.

Figure 4a-d. Quicksort: a) The 9th
topmost item is in its correct position.
The top item is the new pivot.  We have
found an item larger than it (the 3rd),
and one smaller (the 8th), and
interchange them to achieve b).  Soon,
we reach c) in which this pivot has
been moved into its correct final
position (#5). In d), the top 9 elements
have been sorted; we will begin again
recursively on the bottom 6.
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With each group, we adopt a different set of visual cues, while retaining the

same underlying conventions.  Thus, in each group, one colour is used to

indicate items “yet to be considered”; a second colour denotes those items which

are “already sorted”; and a third is used to form borders around items which are

currently being compared.  Whenever items are dimmed and faded into the

background, they are “not currently being considered” within the context of the

algorithm.

The items themselves are represented by vertical bars in the first group; by

horizontal, centered bars in the second group; and by single-digit numbers in the

third.  In each case the final increasing order attained by the algorithm is from

left to right or from top to bottom.

Only the data appears on the screen.  There are no pointers, no labels, no

gimmicks of any kind.  Attributes of the data and processes affecting them are

conveyed entirely by the visual clues described in the last two paragraphs, by the

motion of the data, by the accompanying narrative, and to a lesser extent by the

music track, which is not directly driven by the data but conveys the feeling of

what is going on.

Each of the nine parts begins with an animation sequence of the title of the

algorithm.  The letters of the title appear initially in a scrambled order, and are

then rearranged by the algorithm about to be taught until they spell the title

correctly.  The same colour conventions apply to “sorted items” and “yet to be

sorted items” as will apply later.  The whole process takes from ten to twenty

seconds.  It is not intended that the first-time viewer be able to understand from

this sequence how the algorithm operates.  Yet it does provide a feel for the flow

of the sorting method, and for the order in which the items become sorted.

There follows a presentation of the algorithm itself, on a sufficiently small and

well-chosen set of data to illustrate at a slow pace how the method works.

Where necessary, the pace of the sort is decreased to allow time for complex

narration and for the viewers to digest what it is going on.  The pace is

sometimes increased after a few initial passes have provided a clear explanation

and the scene starts to become boring.

Figure  5a-d.  Heapsort: a) The data is
organized into a heap, in which every
parent item is greater than its children.
We then move the top, largest item into
its correct position at the end of the
array, shown in b).  We then need to fix
up the tree so it once again is a heap,
shown in c).  A somewhat later stage is
shown in d).
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After all three algorithms of each class have been presented, we illustrate their
efficiency with three line graphs, comparing their efficiency on sorts of n items,

where n ranges from 10 to 500.  The three graphs, presented in succession, show

number of data comparisons, number of data movements, and actual execution

time of a DEC PDP-11/45.  Rather than being static, each graph begins with just

the labeled axes and “grow” three coloured lines, one for each algorithm (Fig.

6).  This technique permits the narrator to focus on each algorithm in turn, and

comment on why its line in the graph is shaped as it is.  It also depicts clearly
the difference between the n log n and n2  algorithms.

To illustrate the difference in efficiency even more dramatically, we then run a

“race” of all three technique simultaneously on the screen, sorting 250 items of

data.  Each algorithm is accompanied by a digital clock measuring film time,

which stops as soon as the data is sorted (Fig. 7).  A title for each algorithm

appears as soon as the data is sorted.  The slowest algorithms take over two
minutes to run, while the n log n sorts are finished in five to fifteen seconds.

After all three groups of sorts have been presented, we close with a “grand race”

of all nine algorithms, sorting 2500 items of data each (Fig. 8).  Each item of

data is represented by a coloured dot.  The value of the item is represented by its

vertical position, and its position in the array by its horizontal position.  Thus

unsorted data appears a cloud, and sorted data appears as a diagonal line.

The fastest algorithm, Tree Selection and Quicksort, finishes in 20 seconds each;
the other n log n algorithms within another 20.  Their sorted data then fades out,

leaving room for the final credits, while the n2 sorts plod along, until they, too,

fade out.  This happens long before they are finished, for, as the narrator notes, it

would take another 54 minutes for Bubblesort to complete.

The grand race not only illustrates performance, but illuminates the algorithms.

We see how Shellsort moves all the data close to its final position, then finishes

the job on the final pass.  We see the recursive behaviour of Quicksort as it picks

up rectangular regions of the array and squashes them into a line.  We see the

peculiar way in which Heapsort organizes and shapes the data into a funnel as it

picks off successive largest remaining elements.

As an Epilogue to the film, we replay the entire film at 12 times normal speed.

This provides an opportunity for review, and shows visual patterns unique to

each method that are not obvious at normal speed.

Figure 6. Total execution time of the
three Exchange Sorts.  Each curve
plots growth in execution time as the
size of the data set grows. The

difference between the two n2 sorts,
Bubblesort and Shakersort, and the n
log n Quicksort, represented by the
single low curve on the graph, is
evident.
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The Success of Sorting Out Sorting
Sorting Out Sorting has been both successful and influential.  It is a significant

contribution to the pedagogical tools available for teaching sorting methods to

computer science students.  It encapsulates in 30 minutes of usually vivid and

occasionally compelling imagery the essence of what written treatments require

30 or more detailed pages to convey.  Interviews with students and an informal,

unpublished experiment make it clear that the film communicates effectively

both the substance of the algorithms and the concept of their relative efficiency.

More than 600 copies have been sold over the past 15 years, mostly by word-of-

mouth and with no effective marketing.  I still routinely encounter individuals

whom I have never met before who are effusive in their praise of the film.  Two

letters written to me are particular interesting:

“I was impressed by the amount of careful thought that was evident in all
aspects of the production; the different presentations were always dramatically
well-timed, and the visual logic of each section flowed well... the film said
visually exactly what needed to be said...” (Scott Kim, 20 July 1981)

and

“I am profoundly deaf... I was not able to understand ANY of the voice-over
commentary on the film.  I could hear someone talking; I could hear music, and
beeps; but I could not understand WHAT was being said.  Interestingly enough,
this was not any particular disadvantage.  I felt that I could understand most of
the film... without hearing any of the commentary.” (Bev Biderman, 12 March
1982)

The film was also instrumental in stimulating further work in algorithm
animation, most notably that of Marc Brown (1988, also see     chapter by Brown    ),

which together with SOS in turn inspired much of the work in the field.

The film also goes beyond a step-by-step presentation of the algorithms,
communicating an understanding of them as dynamic processes.  We can see the

programs in process, running, and we therefore see the algorithms in new and

unexpected ways.  We see sorting waves ripple through the data.  We see data

reorganize itself as if it had a life of its own.  These views produce new

understandings which are difficult to express in words.

The film does have weaknesses.  The typography is atrocious.  Colour is

mediocre.  Timing is not always optimal, for it is hard to find the right speed for

a diverse audience.  The film stresses average efficiency too strongly, ignoring

best cases and worst case analysis, and also the subtleties that enter into a real-

Figure 7a-d. The race of the three
Exchange Sorts.  a) The Quicksort
completes after roughly 7 seconds.  b)
It then takes over 1 minute 40 seconds
for the Shakersort to approach
completion.  c) At 2 minute 21 seconds,
it completes.  d) The Bubblesort finally
completes at just over 2 minutes 45
seconds.  Notice that Bubblesort works
from the top down, and Shakersort
works from both the top and the
bottom.
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world choice of technique for a particular problem.  Pedagogically, it is

regrettable that it omits merge sorts and distribution sorts.  Yet it works, and

works very well, even today, 15 years later.

Work on the film has taught us a number of lessons about algorithm animation:

• Effective symbolism depends upon the size of the subject and its scale within

the total composition, and the context within which the image is displayed.

• Significant insights into algorithm behaviour can be gained while only viewing

the data, if the illustrations and the timing are designed carefully, and are

accompanied by appropriate narration.

• Control over motion dynamics must be powerful and flexible to produce

effective animated communications.

• Timing is the key to effective motion dynamics and algorithm animation —

fancy rendering and smooth motion are not necessarily required.

After completing SOS, I took a long hiatus from this research, turning my

attention to typographic enhancements of the appearance of source code, and to

issues of computer program publishing (see Baecker and Marcus, 1990; also the
chapter by         Baecker and Marcus    ).

More recently, we developed two generations of a  Logo environment for novice

programmers that incorporates tools for software visualization and auralization.

The work on LogoMotion is documented in Buchanan (1988) and Baecker and

Buchanan (1990).  The work on the successor system, LogoMedia, is

documented in DiGiano (1992) and DiGiano and Baecker (1992).

In addition to the tight integration of capabilities for program visualization and

auralization, two aspects of this work are particularly exciting.  The LogoMedia
system introduce a novel probe metaphor, which students can attach

unobtrusively to locations in the program or to data items used by the program.

This allows one to specify and tailor visualizations of an algorithm without

modifying the program.  DiGiano also carried out a ethnographic study of three

programmers using LogoMedia on a variety of debugging tasks.  The very

encouraging results from this study are reported in DiGiano (1992).

Recent Developments
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Figure 8.a-b The “grand race.”
Unsorted data appears as a cloud;
sorted data becomes a diagonal line.
The difference between the n log n sorts
(Shellsort, Quicksort, Treesort, and

Heapsort) and the n2 sorts are clearly
visible.  Notice Shellsort’s pushing of
the data towards the line, Quicksort’s
recursive subdivisions, and Heapsort’s
strange data funnel.
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In the last three years, we have also been engaged in developing a novel

computer literacy course (Baecker, 1995) and in applying software visualization

tools in this course.  The course makes use of the Logo Microworlds

environment (LCSI, 1993).  We have developed a number of experimental

animated program execution machines which illustrate and bring to life the

underlying syntax and semantics of the execution of Logo programs (Fig. 9).

The top image in Fig. 9 shows the Logo Plumber, a Microworlds program that

displays the execution of Logo expressions in terms of a plumbing metaphor

developed in Harvey (1997).  The bottom image in Fig. 9 shows the Logo

Visualizer, a Microworlds program that displays the execution of Logo
statements and procedures in a subset of the Logo language.  Just as Sorting Out

Sorting brings to life and makes visible how nine sorting algorithms work, these

machines bring to life and make visible how the Logo language works.

We have described the development and principles governing the success of the
computer animated teaching film Sorting Out Sorting, and have also mentioned

two recent projects in the educational uses of software visualization.  Although

this work is very promising, it is distressing to see how difficult it still is to

describe and control algorithm animations, how hard it is to get these techniques
to scale (but see     papers by         Eisenstadt and          Brayshaw,    by      Eick,    and by            Kimelman,

Rosenberg, and Roth),    and how little the work represented in this volume has

been adopted by the mainstream of computer science education and practice.

Sorting Out Sorting was designed by Ronald Baecker, with assistance from

David Sherman, and programmed by David Sherman, with assistance from

Anthony Ayiomamatitis, David Gotlib, Thomas O’Dell, and Richard

Outerbridge.  Martin Tuori at the Defense and Civil Institute of Environmental

Medicine graciously contributed the use of a film plotter.  Initial versions of the

animated program execution machines are due to Diba Bot and Isabel Jevans.

The versions shown here are the work of Abba Lustgarten and Alexandra

Mazalek.  Jason Chang helped with the figures for this paper.  The Natural

Sciences and Engineering Research Council of Canada provided financial
support.  Sorting Out Sorting  may be obtained in Canada from the Information

Commons, University of Toronto, 130 St. George St., Toronto Ontario M5S

3H1 Canada, (416)978-6049, fax (416)978-0440, and elsewhere in the world

from Morgan Kaufmann Publishers, 340 Pine Street, Sixth Floor, San Francisco

CA. 94104 USA, (415)392-2665, mkp@mkp.com.

Conclusions
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Figure 9a-b. Two animated program
execution machines.

The top image displays the execution of
Logo expressions in terms of a
plumbing metaphor.  The sum,
difference, and list procedures
have been evaluated; the first
procedure will be done next. Data
flows through an interconnected set of
procedures like water flows through a
set of pipes.

The bottom image displays the
execution of Logo statements and
procedures in a subset of the Logo
language.  We are in the 4th iteration
of calls to a hexagon procedure within
the pattern1 procedure.  The image
drawn by the turtle geometry
commands within the procedures is
shown in the enclosed window.  The
execution of successive statements and
their effects in the drawing are
displayed in synchrony, helping to
convey how the Microworlds Logo
interpreter executes a program.

In both cases, we provide single step,
pause and continue, and speed controls
to aid usability.  The graphics is
augmented with sound effects to engage
the user.
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